Matematik Lisans Programı

BİRİNCİ SINIF:

 

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT101

Analiz I

Güz

Z

4+2+0

7

DERS İÇERİĞİ

Diziler; Tek değişkenli fonksiyonlar; Limit; Süreklilik; Türev; Türevin geometrik ve fiziksel anlamları; Ekstremumlar; Limitlerde belirsiz formlar, Diferensiyel, Eğri çizimi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT102

Analiz II

Bahar

Z

4+2+0

8

DERS İÇERİĞİ

Fonksiyonların belirsiz ve belirli integralleri; Riemann integrali yardımı ile alan, yay uzunluğu, yüzey alanı ve hacim hesabı; Has olmayan integraller ve yakınsaklık testleri, Reel değerli seriler.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT103

Soyut Matematik I

Güz

Z

4+0+0

5

DERS İÇERİĞİ

Önermeler, Niceleyiciler; İspat yöntemleri; Kümeler ve kümelerde işlemler; Bağıntı; Fonksiyon.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT104

Soyut Matematik II

Bahar

Z

4+0+0

5

DERS İÇERİĞİ

İşlem ve özellikleri; Kümelerin kardinalitesi; Sonlu, sayılabilir ve sayılamaz kümeler; Sayı kümelerinin inşası ve üzerindeki cebirsel işlemler; Toplam ve çarpım sembolleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT105

Analitik Geometri I

Güz

Z

4+0+0

5

ERS İÇERİĞİ

Düzlemde vektörler; Düzlemde ve uzayda koordinat sistemleri; Düzlemde doğru; Uzayda vektörler; Uzayda doğru; Uzayda koordinat sistemleri; Uzayda düzlem.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT106

Analitik Geometri II

Bahar

Z

4+0+0

5

DERS İÇERİĞİ

Konikler; Koniklerin analitik ifadesi; Koniklerin elemanları; Düzlemde elips; Düzlemde çember;

Düzlemde parabol; Düzlemde hiperbol; Küre yüzeyi; Silindir yüzeyi; Koni yüzeyi; Doğrusal yüzeyler; Dönel yüzeyler.

 

İKİNCİ SINIF:

 

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT201

İleri Analiz I

Güz

Z

4+2+0

7

DERS İÇERİĞİ

Fonksiyon dizilerinde ve serilerinde noktasal ve düzgün yakınsaklık, Weierstrass M-testi, Kuvvet serileri; Taylor serileri; Çok değerli fonksiyonlarda limit, süreklilik ve türev; kısmi türevler; maksimum-minimum problemleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT202

İleri Analiz II

Bahar

Z

4+2+0

7

DERS İÇERİĞİ

İki katlı integraller; Üç katlı integraller; Küresel ve silindirik koordinatlar; Eğrisel integraller; Yüzey integralleri; Yüzey integrallerinin temel teoremleri ve uygulamaları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT203

Lineer Cebir I

Güz

Z

4+0+0

6

DERS İÇERİĞİ

Lineer denklem sistemleri; Matrisler ve özel matrisler; Eşolon form; Lineer denklem sistemlerinin çözümleri; Determinant ve özellikleri; Vektör uzayları; Alt vektör uzayları; Vektör uzayını bazı ve boyutu.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT204

Lineer Cebir II

Bahar

Z

4+0+0

6

DERS İÇERİĞİ

İç çarpım uzayları; Dik tümleyen; Lineer dönüşümler ve özellikleri; Lineer dönüşümlerin matrisleri; Lineer dönüşümün rankı ve çekirdeği; Matrislerin öz değerleri ve özvektörleri; Matrislerin köşegenleştirilmesi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT205

Topoloji I

Güz

Z

4+0+0

6

ERS İÇERİĞİ

Metrik kavramı; Topoloji kavramı; Topoloji tabanı ve alt taban; Topolojik komşuluklar sistemi; Topolojik uzaylarda bir kümenin içi; Dışı, sınırı, kapanışı; Topolojik uzaylarda bir kümenin yığılma ve izole noktalarının kümesi; Topolojik uzaylarda süreklilik.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT206

Topoloji II

Bahar

Z

4+0+0

6

DERS İÇERİĞİ

Homeomorfizm; Ayırma aksiyomları; Sayılabilir-Ayrılabilir uzaylar; Topolojik uzaylarda yakınsaklık; Çarpım-Bölüm uzayları; Topolojik uzaylarda kompaktlık ve bağlantılılık.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT207

Programlamaya Giriş

Güz

Z

3+0+0

3

DERS İÇERİĞİ

MATLAB/Octave programlama yazılımları ara yüzlerindeki pencereler ve işlevleri; Değişken tanımlamaları ve matematiksel işlemler; Vektörler ve matrisler; Şartlı deyimler ve döngüler; Fonksiyonlar ve kullanıcı tanımlı fonksiyonlar; Grafik çizimleri, iki ve üç boyutlu grafikler.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT208

Sayılar Teorisi

Bahar

Z

3+0+0

4

DERS İÇERİĞİ

Tamsayılar ve özellikleri; Bölme algoritması; Taban aritmetiği; Bölünebilirlik; GCD, LCM ve uygulamaları; Doğrusal Diofantine denklemleri; Lineer Diofantine denklem sistemleri; Aritmetik fonksiyonlar; Eulerin ϕ fonksiyonu; Möbius fonksiyonu; Kongrüans tanımı ve özellikleri; Kongrüans denklemleri; Kongrüans uygulamaları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT209

Mesleki İngilizce I

Güz

Z

2+1+0

4

DERS İÇERİĞİ

Reel sayılar; Kartezyen koordinatlar; Fonksiyonlar; Limit ve türevler ile ilgili temel kavramlar.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT214

Ayrık Matematik

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Algoritmalar; Fonksiyonların büyümesi ve algoritmaların karmaşıklığı; Saymanın temelleri; Güvercin yuvası ilkesi; Permütasyonlar ve kombinasyonlar; Binom katsayıları ve özdeşlikler; Genelleştirilmiş permütasyonlar ve kombinasyonlar; Ayrık olasılığa giriş; Bayes teoremi; Beklenen değer ve varyans.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT217

Projektif Geometri I

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Öklid geometrisi; Öklid dışı geometriler; Afin düzlem; Projektif düzlem; Afin ve projektif düzlem arasındaki ilişki; Diğer geometrik yapılar.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT220

Sembolik Programlama

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

MATLAB/Octave programlama yazılımlarındaki sembolik programlama paketleri ile limit, türev ve integral hesaplamaları ve uygulamaları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT224

Temel Kombinatorik

Güz-Bahar

S

3+0+0

4

 

DERS İÇERİĞİ

Matematiksel tümevarım ve iyi-sıralanabilirlik; Özyineli tanımlar ve özyineli algoritmalar; Doğrusal özyineli ilişkilerin çözümü; Böl ve fethet algoritmaları ve özyineleme ilişkileri; Üretici fonksiyonlar; İçleme-dışlama; Diller, çıktılı ve çıktısız sonlu-durumlu makineler.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT231

Matematiğin Temelleri

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Kümeler; Sayılar; Mutlak değer; Üslü ve köklü ifadeler; Fonksiyonlar; Denklemler; Eşitsizlikler; Denklem sistemleri; Trigonometri; Logaritma.

ÜÇÜNCÜ SINIF:

 

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT301

Kompleks Analiz I

Güz

Z

4+0+0

6

DERS İÇERİĞİ

Kompleks sayıların cebirsel; Geometrik ve topolojik özellikleri; Kompleks diziler; Kompleks dizilerin yakınsaklığı; Analitik fonksiyonlar.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT302

Kompleks Analiz II

Bahar

Z

4+0+0

6

DERS İÇERİĞİ

Elementer fonksiyonlar ve türevleri; Cauchy-Riemann denklemleri; Harmonik fonksiyonlar; Kompleks düzlemde eğriler; Kompleks integral; Cauchy- Goursat teoremi; Cauchy integral formülü; Liouville teoremi ve Cebirin Esas Teoremi; Taylor ve Laurent Serileri; Rezidüler.

ersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT303

Cebir I

Güz

Z

4+0+0

6

DERS İÇERİĞİ

İkili işlemler; Gruplar; Altgruplar; Devirli gruplar; Normal altgruplar; Bölüm grupları; Grupların direkt çarpımı; Grup homomorfizmi ve izomorfizmi; Eşlenik sınıflar; Sylow altgrupları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT304

Cebir II

Bahar

Z

4+0+0

6

DERS İÇERİĞİ

Halkalar; Alt halkalar; Idealler, Bölüm halkaları; Halka homomorfizmi ve izomorfizmi; Polinom halkaları; Tek türlü çarpanlara ayırma bölgesi

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT305

Diferansiyel Denklemler I

Güz

Z

4+0+0

4

DERS İÇERİĞİ

Tanımlar ve terminoloji; Başlangıç değer problemleri; Birinci mertebeden diferansiyel denklemler; Çözüm eğrileri ve yön alanları; Ayrılabilir, doğrusal, homojen ve tam denklemler; Değişken değiştirme; Yüksek mertebeden diferansiyel denklemler; Doğrusal denklemler teorisi; Başlangıç ve sınır değer problemleri; Homojen ve homojen olmayan denklemler; Mertebenin indirgenmesi; Sabit katsayılı homojen doğrusal denklemler; Belirsiz katsayılar; Parametrelerin değişimi; Cauchy-Euler denklemleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT306

Diferansiyel Denklemler II

Bahar

Z

4+0+0

4

DERS İÇERİĞİ

Doğrusal adi diferansiyel denklemlerin seri çözümleri; Adi ve düzenli tekil noktalar komşuluğunda çözümler; Laplace dönüşümü; Laplace dönüşümünün ve ters Laplace dönüşümünün özellikleri; Konvolüsyon ve birim adım fonksiyonu; Başlangıç değer problemlerinin Laplace dönüşümü ile çözümü; Birinci mertebeden, lineer diferansiyel denklem sistemleri; Lineer sistemler teorisi; Homojen ve homojen olmayan lineer denklem sistemlerin çözümü; Sistemlerin Laplace dönüşümü ile çözümü.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT307

Diferensiyel Geometri I

Güz

Z

4+0+0

5

DERS İÇERİĞİ

Afin uzay; Öklid uzayı; Manifold; Tanjant vektör; Tanjant uzayı; Vektör alanı; Kovaryant türev; Eğriler; Eğri çiftleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT308

Diferensiyel Geometri II

Bahar

Z

4+0+0

5

DERS İÇERİĞİ

Hiperyüzeylerde yönlendirme; Şekil operatörü; Temel formlar; Gauss dönüşümü; Gauss eğriliği; Ortalama eğrilik; Geodezik eğrilik; Normal eğrilik; Bazı hiperyüzeyler.

 

 

 

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT309

Nümerik Analiz

Güz

S

3+0+0

4

DERS İÇERİĞİ

Sayısal hesaplamaya ilişkin matematiksel ön bilgiler; Lineer olmayan denklemlerin ve denklem sistemlerinin sayısal çözümü; Lineer denklem sistemlerinin sayısal çözümü; Doğrudan çözüm yöntemleri ve yinelemeli yöntemler; Matrislerde özdeğer problemi ve sayısal çözüm yöntemleri; İnterpolasyon; Eğri uydurma; Sayısal türev ve sayısal integral.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT310

Uygulamalı Nümerik Yöntemler

 

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Bilgisayar programları (MATLAB/Octave vb. programlama yazılımları) ve sayısal çözüm yöntemleri kullanılarak doğrusal olmayan denklemlerin çözümü; Fonksiyonlara yaklaşım ve interpolasyon; Sayısal türev ve integrallerin hesaplanması.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT311

Vektör Analiz

Güz-Bahar

S

3+0

4

DERS İÇERİĞİ

Vektör değerli fonksiyonların diferansiyeli ve integrali; Yüzey integralleri; Vektör alanları; Vektör alanlarının integralleri

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT313

Kinematik

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Dual sayılar; Dual sayılar halkası; Dual sayıların matris gösterimi; Dual vektörler; Dual vektör uzayları; E-study dönüşümü; Kuaterniyonlar teorisi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT314

Dönüşümler ve Geometriler

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Dönüşümler; Dönüşüm grupları; Dönüşümler yardımıyla geometrilerin sınıflandırılması; Düzlemde hareket çeşitleri; Benzerlik dönüşümleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT315

Kodlama Teorisine Giriş

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Temel varsayımlar, hata örüntülerini tespit etme ve düzeltme, iletilen en olası kod sözcüğünü bulma, hata-tespit kodları ve hata-düzeltme kodları; Lineer kodlar, üreteç ve parite kontrol matrisleri; Kodlar için bazı sınırlar, mükemmel kodlar; Hamming kodları, genişletilmiş Golay kodu; Reed-Muller (RM) kodları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT316

Spektral Teori I

Güz-Bahar

S

2+0+0

4

DERS İÇERİĞİ

Spektral teoriye giriş; Lineer operatörler; Sınır koşulları ve Sturm-Liouville operatörünün tanımı; Lagrange özdeşliği; Pozitif, simetrik ve selfadjoint Sturm-Liouville operatörleri; Selfadjoint operatörlerin özdeğerleri ve özfonksiyonları; Özdeğer ve özfonksiyonların bulunmasına ait örnekler; Sturm-Liouville denkleminin çözümlerinin bulunması; Çözümlerin ardışık yaklaşımlarla elde edilmesi; Fonksiyonların asimptotiği; Sturm-Liouville denkleminin çözümlerinin asimptotiğinin bulunması; Özdeğerlerin asimptotiğinin elde edilmesi; Özfonksiyonların asimptotiğinin hesaplanması.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT317

Fourier Analiz

Güz-Bahar

S

3+0

4

DERS İÇERİĞİ

Fourier serileri; Fourier integrali; Fourier dönüşümlerinin türevleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT318

Bilimsel Doküman Hazırlama

Güz-Bahar

S

2+0+0

4

DERS İÇERİĞİ

Latex doküman yapısı; Matematiksel ifadeler; Grafik ve tablolar; Referanslar ve etiketleme; Bibliyografya yönetimi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT321

Kriptografiye Giriş

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Şifreleme şemaları, simetrik-anahtar şifrelemesi, Fiestal şifreleri ve DES; Algoritmalar, komplesiti ve modüler aritmetik, kuadratik kalanlar, asallık testi, çarpanlara ayırma ve karekökler, ayrık logaritmalar; Tek-yön ve hash fonksiyonları, RSA, ElGamal, kriptografik protokoller.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT322

Saçılım Teorisi I

Güz-Bahar

S

2+0+0

4

DERS İÇERİĞİ

L1 ve L2 uzayları; Parametreye bağlı integraller; Fourier dönüşümü ve özellikleri; Fourier dönüşümlerine ait örnekler; Asimptotik eşitlikler; Jost çözümü ve özellikleri; Jost çözümünün x ve 𝜆 değişkenlerine göre asimptotikleri; Jost fonksiyonu ve sıfırları; Saçılım fonksiyonu; Saçılma verileri ve özellikleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT323

Graf Teoriye Giriş

Güz-Bahar

S

3+0+0

4

DERS İÇERİĞİ

Graf terminolojisi, graf gösterimi ve graf eşyapılılığı; Yönlendirilmiş graflar; Ağaçlar ve ağaçların karakterizasyonu, kapsama ağaçları, optimizasyon ve ağaçlar; Eşleştirmeler ve örtüler.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

 

MAT324

Metrik Uzaylar I

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Kümeler ve fonksiyonlar; Mutlak değer ve bazı eşitsizlikler; Reel sayılarda yakınsaklık ve süreklilik; Metrik uzaylar; Normlu uzaylar; Metrik uzaylarda yakınsaklık; Metrik uzayların topolojik analizi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT325

Metrik Uzaylar II

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Metrik uzaylarda yakınsaklık ve tamlık; Metrik uzaylarda Banach Sabit Nokta Teoremi; Metrik uzaylarda süreklilik; Metrik uzaylarda kompaktlık.

 

 

 

DÖRDÜNCÜ SINIF:

 

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT401

Fonksiyonel Analize Giriş

Güz

Z

4+0+0

6

DERS İÇERİĞİ

Metrik uzaylar; Normlu uzaylar; Lineer ve sınırlı operatörler; Hahn Banach teoremi; Banach Steinhauss teoremi; Açık dönüşüm ve kapalı grafik teoremi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT402

Bitirme Çalışması

Bahar

Z

0+2+0

6

DERS İÇERİĞİ

Bilimsel araştırma; Bilimsel etik; Literatür taraması; Kaynakların tasnifi.

 

 

 

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT403

Kompleks Fonksiyonlar Teorisi

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Lineer ve lineer olmayan kompleks dönüşümler; Konform dönüşümler; Analitik fonksiyonlar; Argüment teoremi ve ilgili sonuçları; Riemann yüzeyleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT404

Fonksiyonel Analiz

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Hilbert uzayları; Kompakt operatörler; Eşlenik; Özeşlenik operatörler; Volterra Operatörleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

 

MAT405

 

Kısmi Diferansiyel Denklemler

 

Güz

 

S

 

3+0+0

 

6

DERS İÇERİĞİ

Temel kavramlar ve kısmi diferansiyel denklemlerin sınıflandırılması; Birinci mertebeden kısmi diferansiyel denklemler; İkinci mertebeden lineer diferansiyel denklemlerin tipleri ve normal formları; Hiperbolik, parabolik ve eliptik denklemler; Değişkenlerine ayırma yöntemi; Fourier serileri; Bir boyutlu ısı ve dalga denklemlerinin çözümü.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT406

Reel Analiz

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Küme sınıfları; Ölçü fonksiyonu; Ölçülebilir küme ve ölçülebilir fonksiyon; Monoton yakınsaklık teoremi; Fatou Lemması; Beppo-Levi teoremi; Lebesque integrali; Lebesque yakınsaklık teoremi; Lp uzayları ve özellikleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT407

Uygulamalı Matematik

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Lineer denklem sistemleri ve operatör yöntemi; Özdeğer problemleri; Sturm-Liouville sistemleri; Özfonksiyonlar ve ortogonal fonksiyon uzayları; Özfonksiyon açılımları; Ortalama yakınsaklık; Tamlık; Parseval özdeşliği; Adjoint formlar ve Lagrange özdeşliği; Aykırı (singüler) Sturm-Liouville sistemleri; Salınımlı çözümler; Sturm ayırma ve karşılaştırma teoremleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT409

Lineer Olmayan Dinamik Yapılar

Güz-Bahar

S

3+0+0

6

 

DERS İÇERİĞİ

Tek boyutlu modellerin sabit noktaları ve kararlılık analizleri; Çatallanma (Bifurcation) ve çatallanma çeşitleri; İki boyutlu lineer sistemlerin çözümleri ve sabit noktalarının sınıflandırılması; İki boyutlu lineer olmayan sistemlerin faz düzlemlerinin analizleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT410

Devirli Lineer Kodlar

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Devirli kodlar, devirli kodlar için üreteç ve parite kontrol matrisleri; Sonlu cisimler, minimal polinomlar; Devirli Hamming kodları, BCH kodları, Reed-Solomon kodları, Burst hata-düzeltme kodları; Berlekamp-Massey algoritması.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT411

Modül Teori

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Modül tanımı ve modül örnekleri; Altmodüller; Sonlu üretilmiş modüller; Devirli modüller; Basit modüller; Modül homomorfizmaları; Modül izomorfizma teoremleri; Burulmalı modüller; Bölüm modülleri; Modüllerin dik toplamları; Tam diziler (kısa tam diziler, parçalanmış tam diziler); Serbest modüller ve vektör uzayları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT412

Eliptik Fonksiyonlar ve İntegraller

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Eliptik fonksiyonlar; Eliptik fonksiyonların türevleri, integralleri ve grafikleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT413

Adi Diferensiyel Denklemlerin Sayısal Çözümleri

Güz

S

3+0+0

6

DERS İÇERİĞİ

Başlangıç değer problemleri; Fark denklemleri; Kararlılık, tutarlılık ve yakınsaklık analizi; Runge- Kutta yöntemleri; Ekstrapolasyon yöntemi; kararlılık analizi; Stif sistemler; Uyarlanmış (adaptif) yöntemler; Çok-adım yöntemleri; Genel lineer çok-adım yöntemleri; Tahmin etme-düzeltme yöntemleri; Hibrit yöntemler; Sınır değer problemleri için sayısal çözüm yöntemleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT415

Graf Teori

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Kesmeler ve bağlantılılık, k-bağlantılı graflar; Köşe renklendirmeler ve üst sınırlar, k-kromatik grafların yapıları, düzgün renklendirmeleri sayma; Katıştırmalar ve Euler formülü, düzlemsel grafların karakterizasyonu, düzlemsellik parametreleri; Çizgi grafları ve kenar-renklendirmeler, Hamilton çevrimleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT416

Cisim Genişlemeleri

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Vektör uzayları ve lineer dönüşümler; Cisim genişlemeleri; Cebirsel genişlemeler; Parçalanış cisimleri; Cisim izomorfizmleri ve genişlemeler; Ayrılabilirlik; Sonlu genişlemeler; Galois Teorisi; Polinomun Galois grubu; Polinom denklemlerinin çözümleri.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT416

Spektral Teori II

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Periyodik ve antiperiyodik Sturm-Liouville operatörleri; Periyodik ve antiperiyodik operatörler için Lagrange formülü; Özdeğer ve özfonksiyonların bulunmasına ait örnekler; Periyodik ve antiperiyodik operatörlerin özdeğerlerinin ve özfonksiyonlarının asimptotiği; Singüler selfadjoint Sturm-Liouville operatörü; Genel özdeğer denklemleri; Özdeğerlerin katı; Jost çözümünün integral gösterimi ve

asimptotiği; Jost fonksiyonu ve özellikleri; Resolvent operatör; Rezolvent operatöre ait örnekler; Sürekli spektrum; Jost fonksiyonunun sıfırları ve diskre spektrum.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT417

Manifoldlar I

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Öklid uzayı; Topolojik kavramlar; Rn de diferensiyellenebilirlik; Manifol kavramına giriş; Topolojik manifoldlar; Diferensiyellenebilir manifoldlar; Diferensiyellenebilir manifold örnekleri; Manifoldlar üzerinde düzgün fonksiyonlar; Manifoldlar arasında düzgün fonksiyonlar; Diffeomorfizmler; Kısmi türevler; Ters fonksiyon teoremi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin

Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT418

Manifoldlar II

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Alt manifoldlar; Alt manifold örnekleri; Manifoldlar üzerinde eğriler; Darboux çatısı; Vektör demetleri; Manifoldlar üzerinde tanjant vektörler ve tanjant uzay; Manifoldlar üzerinde vektör alanı, dual vektör alanı, türev dönüşümü; Pull-back dönüşümü; Dış türev, iç türev ve Lie türev; Distribüsyonlar ve

integral manifoldlar; Riemann manifoldları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT420

Matematiksel Biyoloji

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Fark denklemleri ve diferansiyel denklemlerin biyolojideki uygulamaları; Kararlık, kararlılık analizi ve uygulamaları; Çatallanma, çatallanma teorisi ve uygulamaları.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT422

Saçılım Teorisi II

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Vektör değerli L1 ve L2 uzayları; Vektör değerli fonksiyonlar için asimptotik eşitlikler; Dirac sistemi; Dirac sisteminin Jost çözümleri; Jost çözümleri için integral gösterim; Jost çözümlerinin asimptotikleri; Dirac sistemi için saçılım fonksiyonu ve özellikleri; Dirac sistemi için saçılım matrisi ve özellikleri; Tüm reel eksende Sturm-Liouville denklemi.

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT423

Geometrik Topolojiye Giriş

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Çarpım ve bölüm uzayları; n-boyutlu alışılmış topolojik uzaylar; Yüzeyler; Bağlantılı toplam; Yüzeylerin sınıflandırılması ve bazı değişmezler; Grafik ve ağaçlar; Simpleksel kompleksler

Dersin Kodu

Dersin Adı

Yarıyıl

Dersin Türü (Z/S)

T+U+L

(Saat/Hafta)

AKTS

MAT425

Bağlantılı Uzaylar

Güz-Bahar

S

3+0+0

6

DERS İÇERİĞİ

Bağlantılı kümeler ve uzaylar; Bağlantılılık ve sürekli fonksiyonlar; Çarpım uzaylarının bağlantılılığı; Bağlantılı bileşenler; Yerel ve yol bağlantılı uzay.